Iryna Benilova

Center for Human Genetics
Laboratory for the Research of Neurodegenerative Diseases
Department of Molecular and Developmental Genetics, VIB
University of Leuven

BSc Biology, National University of Kiev, Ukraine, 2002
MSc Biochemistry, National University of Kiev, Ukraine, 2004
PhD Biotechnology, Ecole Centrale de Lyon, France, 2007

Current Position
Postdoctoral scientist at University of Leuven
VIB Department of Molecular and Developmental Genetics

E-mail: iryna.benilova@cme.vib-kuleuven.be
Phone: +32 1 637 69 22

Keywords
Alzheimer’s disease; amyloid cascade; aggregation; seeding; synaptic impairment

Science

Accumulation of abnormally folded proteins is a key histopathological characteristic of many neurodegenerative disorders. In Huntington’s disease, the polyglutamine protein huntingtin is present in intranuclear inclusions; in prion disease, infectious prion particles bind to the membrane-bound protein. In Parkinson’s disease, α-synuclein aggregates as Lewy bodies in the cytoplasm of neurons. In Alzheimer’s disease, both intracellular and extracellular amyloids—that is, neuronal tangles containing phosphorylated tau and amyloid plaques consisting of amyloid peptides (Aβ)—are observed. Thus, aggregates accumulate extracellularly or in the cytoplasm, in the nucleus and at the cell membrane in different diseases.

A plausible generic explanation for the toxicity of intracellular aggregates involves the idea that the sequestration of crucial proteins together with amyloid leads to cellular dysfunction and death. Deregulated proteostasis could initiate and certainly enhance such protein failure. In Alzheimer’s disease, tau aggregates occur intracellularly and could indeed theoretically trap functional proteins, such as tau itself, possibly leading to microtubule destabilization or other cellular dysfunction and death. Alzheimer’s disease is somewhat unusual, however, in that there are two aggregates—intracellular tau and extracellular Aβ—that potentially could result in neuronal dysfunction and death. A central question in the field is: by what mechanism might extracellular amyloid peptides such as Aβ harm cells? An alternative hypothesis suggests that small soluble oligomeric structures consisting of amyloid peptides can cause cellular toxicity. Metastable oligomeric structures have indeed been described in preparations of amyloid-forming peptides such as α-synuclein, tau, prion and Aβ. When produced intracellularly, oligomers expose flexible hydrophobic surfaces that might contribute to trapping vital proteins, but they also, when produced extracellularly (as is largely the case for Aβ), cause potentially toxic alterations of cell membranes. This notion of a toxic Aβ oligomer has been strongly promoted in Alzheimer’s research because it provides potential explanations for the toxicity of the extracellular Aβ peptide and for the lack of a
correlation between deposition of insoluble Aβ plaques and neuronal loss: Aβ oligomers might be able to mediate toxicity at some distance from established plaques. Further, they could subtly damage and predispose sensitive neurons to the formation of intracellular tau aggregates. The present avalanche of publications claiming the identification of various toxic Aβ oligomers would indeed seem to support this hypothesis. However, the exact meaning of the term ‘toxic Aβ oligomer’ is very confusing.

Recently, it has been shown that human AD brain extracts containing soluble Aβ aggregates induce amyloidosis in mice that otherwise never develop amyloid plaques. This suggests a connection between seeding competence and toxicity of small Aβ aggregate species. A seeding experiments present the strongest evidence of readily measurable Aβ-mediated toxic effects in brain parenchyma. Therefore, we believe there is an urgent need for new, reliable methods that allow the generation, characterization and chemical manipulation of disease-relevant, toxic Aβ species.

Our aim is to investigate the evidence for toxic Aβ oligomers, their role in Alzheimer’s disease, and the question of whether it is reasonable to consider toxic oligomers as drug targets.

Recent Research Projects

ERA-Net NEURON
Period: 2012 – 2015
Title: “Preparation of amyloid-beta aggregate species from synthetic and patient-derived material to define disease-causing mechanisms”
Role: postdoc researcher

Selected Publications

